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INTRODUCTION TO SEQUENCE ALIGNMENT 

Finding the best alignment between two sequences is a fundamental problem in 
computational biology.  We briefly consider this problem to illustrate the importance of efficient 
algorithms in this field. 

How many possible alignments exist between any two sequences of length m and n 
(assume n > m)?  For example, consider the two sequences: ACGCAT 
        AGCGCA 

If no gaps are allowed, there can be n possible alignments, so time complexity is O(n)1. 

If any number of gaps is allowed, as long a gap is not aligned to another gap, there 
number of possible alignments is given below.  The factorial terms come from the number of 
ways to choose columns in which to insert k gaps in the two sequences. 
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The time complexity of searching through every possible alignment would make this 
method infeasible.  In future lectures, we will discuss an important technique, called dynamic 
programming, to reduce this time complexity to O(n2).  Other heuristic methods, such as 
BLAST, can accomplish even faster searches. 

Dynamic Programming applied to Fibonacci numbers 
Fibonacci numbers are defined recursively by the following formulae: 

 F(n)  =  F( n – 1 )  +  F( n – 2 ) 
  F(1)  =  1 
  F(0)  =  1 

                                                 
1 Big-oh notation summarizes the worst-case time or memory complexity of an algorithm, as a function of the input 
data size.  Only the highest exponential term matters, e.g., O(3n2 + 5n) should always be re-written as O(n2).  The 
following list is sorted in ascending order of time complexity (algorithms closer to the top are better). 
O(1)  Constant  Exact formula for Fibonacci numbers 
O(log n)  Logarithmic Binary search through a sorted list of numbers 
O(n)  Linear  Reading through a list of numbers 
O(n log n)   Merge sort  
O(n2)  Quadratic Insertion sort; dynamic programming alignments 
O(kn)  Exponential Enumerating all possible words of length n with an alphabet of size k 
O(n!)  Factorial  Naïve method to search all alignments of length n 
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A naïve way to write a program to compute the 5th Fibonacci number would be to solve 
for F(5) recursively.  The program execution can be represented by a tree, with branches 
representing nested levels of recursion (note that branching from one of the F(2) terms has been 
omitted).  The branching terminates when either of the base cases, F(0) or F(1), is reached. 

 
The time complexity of a recursive implementation is approximately O(n1.6).  Of course, 

this procedure is not the intuitive way (for humans; computers do what they’re told) to compute 
Fibonacci numbers.  Instead, we would simply store the intermediate values by writing down the 
Fibonacci sequence.  This process of storing intermediate values, called memoization or caching, 
turns out to be the dynamic programming solution to the Fibonacci problem, which has time 
complexity O(n). 

n 0 1 2 3 4 5 

F(n) 1 1 2 3 5 8 

 

There is an even faster way, i.e. O(1), to obtain the nth Fibonacci number, using Binet’s 
formula (but actually attributable to Euler): 

φ
φ

−Φ
−Φ

=−
nn

nF )1(  

where  Φ = ( 1 + √5 ) / 2 also known as the golden mean 
 and  φ =  ( 1 – √5 ) / 2 
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SEQUENCE EVOLUTION 

Effects of Sequence Mutations 

Causes of mutations Possible effects on proteins Possible effects on organism 

Errors in DNA replication 
DNA damage 
Errors in crossover 

Silent: codon degeneracy 
Conservative mutation 
Changes to protein structure 
Change in active site specificity 

Lethal 
Masked by duplication or 
other redundancy 
Superior fitness 

 

In summary, mutations can be grouped under 3 categories.  Silent mutations to the same 
or similar amino acids may not affect the protein’s function.  Negative mutations may interfere 
with protein activity by affecting its structure or specificity.  In rare cases, positive mutations 
may introduce improvements by changing the protein’s structure or specificity. 

If an organism dies due to a mutation causing a malfunction in the protein, the mutation 
should disappear.  However, if the mutation is retained (and observed in extant sequences), then 
we assume that it had been accepted at some point in evolutionary history.  Although selection 
occurs after every round of DNA replication, it occurs on the level of protein function.  

Consider a hypothetical example of sequence evolution for an essential gene: 

Years ago DNA sequence 
similarity 

Protein sequence 
similarity 

Protein structure 
similarity 

Functional similarity 

800 million D % < D % High Pretty well conserved 

400 million Very low Moderately Moderate Pretty well conserved 

Today Very low Very low Quite similar Pretty well conserved 

 

Imagine that a gene duplication occurred about 200 million years ago.  There are several 
possible scenarios for the other gene.  One possibility is that one copy’s sequence changed even 
more rapidly, and perhaps even gained a new function, than the other. 

Detecting Evolutionary Relationships 
As a rule, related sequences become more and more divergent, rather than more similar.  

In general, protein structure similarity > protein sequence similarity > DNA sequence similarity.  
Therefore, most powerful tools for discovering evolutionary relationships between proteins 
involve structural comparisons.  But even in the absence of protein structure, comparisons 
between protein sequences perform much better than comparisons between DNA sequences. 

Since function involves some complicated relationship among structural similarity, 
protein sequence similarity and DNA sequence similarity, the inference of functional similarity 
can be difficult.  In particular, similarity at a sequence or structural level does not necessarily 
guarantee functional similarity. 

Mutation rates are not constant among different classes of protein sequences.  Examples 
of protein families that evolve quickly include host immune response proteins, as well as cell 
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surface receptors of pathogens.  Examples of proteins that evolve slowly include polymerases, 
histones and cytochrome c (which is part of the electron transport chain for ATP synthesis).  In 
general, there is a high correlation between the number of interactions at protein surfaces and 
mutation rate. 

Mutation rates may also vary within proteins, due to particular features within proteins 
(such as active site residues of enzymes, residues important for the protein fold, etc.)  

For both of the cases mentioned above, note that the mutation rate variations are 
primarily due to variations in selective pressures on the protein sequence, not positional 
variations in the mutability of DNA. 

Vocabulary for Evolutionary Relationships  
When we align sequences, we do not observe the ancestral sequences, only those present 

in the extant organisms.   

Two sequences that are evolutionarily related are homologous.  Note that this term is 
NOT tautologous to similarity; in particular, two sequences that are similar are NOT necessarily 
homologous.  In addition, the concept of homology (just like pregnancy) is indivisible: either a 
pair of sequences is homologous or not (see the Fitch articles on the course website). 

The terms orthologs and paralogs are applied based on the evolutionary history of 
sequences.  Orthologous genes are related to each other via species divergence.  Paralogous 
genes are related to each other via gene duplication. 

Think carefully about the application of these terms to the example below, which will 
help you with your first problem set. 

 


